Computed Tomography (CT) Analysis Of Femoral Head Translation: A Cadaveric Investigation

Benjamin Kuhns1 MD
Nozomu Inoue1 MD, PhD
Gift C. Ukwuani1 MD

Alexander Weber1 MD
Richard C. Mather III2 MD, MBA
Shane J Nho1 MD, MSc.

1Chicago, Illinois, USA.
2Houston, Texas, USA.
Disclosures

BDK, AEW, GC, GU: None

NI: National Institutes of Health (NCCIH)

Background

- The hip joint is a ball and socket type with mainly rotational motion. A series of cadaveric studies have shown it undergoes translation possibly as a result of the asphericity of the femoral head and acetabulum.1,2
- According to a study by Safran MR et al, excision of soft tissues around the hip joint affects hip translation and excessive hip translation subsequently may lead to osteoarthritis.3
Purpose

The purpose of this study was to:

● Determine the three-dimensional (3D) translation of the hip joint at different hip positions in a cadaveric model and determine if there are differences based on 3D morphology.

● To observe the effect of soft tissues on hip translation.
Methods.

- 4 male fresh-frozen bilateral cadaveric specimens with no prior hip or acetabular surgery were selected for this study. Each was mounted onto a custom-made CT compatible positioner.

- Hip was fixed in a series of positions simulating physiologic hip motions: neutral resting position, 45 degrees of flexion (Flex45), 90 degrees of flexion (Flex 90), flexion adduction internal rotation (FADIR), and flexion abduction external rotation (FABER).

- A 3-D CT was conducted in each position.
Methods

- Following the initial CT, the hip was dissected down to the capsuloligamentous structures and rescanned in each of the 5 positions.

- Translation was measured in the mediolateral, craniocaudal, and anteroposterior directions compared to a reference neutral position.

- Analysis was done using a validated, high precision 3D-3D registration technique. Alpha angle, lateral center edge angle (LCEA), and Tonnis angle were measured to correlate translation to commonly employed radiologic variables.
Results

- The mean alpha angle, LCEA, and Tonnis angles were 48.8±11.1°, 30.7 ±5.1°, and 9.4±3.9° respectively. Factoring in all planes of motion, the average translation in the Flex45 position was 1.0±0.21mm. The average translation in the Flex 90 position was 1.33±0.32.
- The average translation in the FADIR and FABER positions were 1.32±0.21 and 1.45±0.15, respectively.
- The average total translation did not change significantly with the soft tissues removed to the level of the hip capsule except for the FADIR position, which demonstrated a significant increase in total translation (1.49±0.56; p=0.05). Hips with larger alpha angles were associated with increased total translation in Flex45 position (r=0.8; p=0.03) and the FADIR position (r=0.79; p=0.02).
Results

- Increasing alpha angle was associated with increased anterior translation of the femoral head in the FADIR position ($r=0.85; p=0.008$).

- Increased LCEA was associated with decreased total translation in the Flex45 position ($r=0.9; p=0.006$) and the FADIR position ($r=0.75; p=0.03$).

- Changes in Tonnis angle were not associated with changes in total femoral head translation.
Conclusion

- This study demonstrates that in intact hip specimens, femoral head translation occurs as the hip moves through a physiologic range of motion as well as during impingement positions.

- Preliminary results suggest that cam-type impingement (hip with increased alpha angles) may increase femoral head translation, whereas overcoverage (hips with increased LCEA) may decrease femoral head translation.
References

