Cyclic and Load to Failure Properties of All-Suture Anchors in Synthetic Acetabular Cancellous Bone

Nathan P. Douglass, MD
Anthony W. Behn, MS
Marc R. Safran, MD

Department of Orthopedic Surgery

ISHA Annual Meeting
San Francisco, USA
September 2016
Disclosures

- Dr. Safran
 - Consultant - ConMed and Medacta
 - Fellowship support – Smith & Nephew, Ossur, and ConMed Linvatec
 - Research Support - ConMed Linvatec, ISAKOS, Ferring Pharmaceuticals
 - Royalties – Smith & Nephew, Stryker, DJO

- Dr. Douglass and Mr. Behn have no disclosures
Introduction

- Metal, polyether ether ketone (PEEK) and various biocomposites have been routinely used in shoulder labral repair.
- However, there is a paucity of data on the performance of the more recently-developed all-suture anchors (ASAs) [1-3].
- In particular, ASAs have not been tested in acetabular bone, or bone substitute simulating the range of bone properties found in the acetabulum.
Questions

1. Do all-suture anchors have better or worse fixation than a commonly used standard suture anchor?

2. Is there variation in fixation between all-suture anchors of different designs?

3. Does high density bone affect the fixation of these various suture anchors?
Methods

Test all ASAs marketed for hip labral repair
 - 12 anchors
 - Bioraptor 2.3 PK = control (PEEK ribbed implant)
 - 7-11 anchors per group based on previous studies [1-3]

Sawbones with properties replicating:
 - High density – acetabular rim (30 pcf)
 - Low density – glenoid (20 pcf)
 - Based on multiple cadaveric studies [4-12]

Comparing outcomes in 20 pcf vs. 30 pcf for each anchor
 - Welch T-test

Comparing anchors to each other, in both densities
 - Welch ANOVA with Games-Howell post hoc test

Comparisons only made when at least 3 anchors survived (or were present)
Commercially-Available All-Suture Anchors

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Drill size (mm)</th>
<th>Suture size</th>
<th># suture strands</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suturefix Ultra 1.7</td>
<td>Smith & Nephew</td>
<td>1.7</td>
<td>2</td>
<td>1</td>
<td>hip and shoulder labrum</td>
</tr>
<tr>
<td>Suturefix Ultra 1.9</td>
<td>Smith & Nephew</td>
<td>1.9</td>
<td>1</td>
<td>2</td>
<td>shoulder labrum</td>
</tr>
<tr>
<td>JuggerKnot 1.0</td>
<td>Biomet Sports Medicine</td>
<td>1.0</td>
<td>2-0 or 3-0</td>
<td>1</td>
<td>hand, small joint</td>
</tr>
<tr>
<td>JuggerKnot 1.4</td>
<td>Biomet Sports Medicine</td>
<td>1.4</td>
<td>1</td>
<td>1</td>
<td>shoulder labrum</td>
</tr>
<tr>
<td>JuggerKnot 1.45 #1</td>
<td>Biomet Sports Medicine</td>
<td>1.45</td>
<td>1</td>
<td>1</td>
<td>hip labrum</td>
</tr>
<tr>
<td>JuggerKnot 1.45 #2</td>
<td>Biomet Sports Medicine</td>
<td>1.45</td>
<td>2</td>
<td>1</td>
<td>hip labrum</td>
</tr>
<tr>
<td>JuggerKnot 1.5</td>
<td>Biomet Sports Medicine</td>
<td>1.5</td>
<td>2</td>
<td>1</td>
<td>shoulder labrum</td>
</tr>
<tr>
<td>JuggerKnot 2.1</td>
<td>Biomet Sports Medicine</td>
<td>2.1</td>
<td>1</td>
<td>1</td>
<td>shoulder labrum</td>
</tr>
<tr>
<td>JuggerKnot 2.9</td>
<td>Biomet Sports Medicine</td>
<td>2.9</td>
<td>2</td>
<td>2</td>
<td>rotator cuff</td>
</tr>
<tr>
<td>Y-Knot 1.3</td>
<td>ConMed Linvatec</td>
<td>1.3</td>
<td>2</td>
<td>1</td>
<td>hip and shoulder labrum</td>
</tr>
<tr>
<td>Y-Knot 1.8</td>
<td>ConMed Linvatec</td>
<td>1.8</td>
<td>2</td>
<td>2</td>
<td>shoulder labrum</td>
</tr>
<tr>
<td>Iconix 1</td>
<td>Stryker Endoscopy</td>
<td>1.4</td>
<td>2</td>
<td>1</td>
<td>broad, including hip</td>
</tr>
<tr>
<td>Iconix 2</td>
<td>Stryker Endoscopy</td>
<td>2.3</td>
<td>2</td>
<td>2</td>
<td>broad, including hip</td>
</tr>
<tr>
<td>Iconix 3</td>
<td>Stryker Endoscopy</td>
<td>2.3</td>
<td>2</td>
<td>3</td>
<td>broad, including hip</td>
</tr>
<tr>
<td>Iconix 25</td>
<td>Stryker Endoscopy</td>
<td>2.3</td>
<td>5</td>
<td>2</td>
<td>broad, including hip</td>
</tr>
<tr>
<td>Q-Fix 1.8</td>
<td>ArthroCare</td>
<td>1.8</td>
<td>2</td>
<td>1</td>
<td>hip and shoulder labrum</td>
</tr>
<tr>
<td>Q-Fix 2.8</td>
<td>ArthroCare</td>
<td>2.8</td>
<td>2</td>
<td>2</td>
<td>rotator cuff</td>
</tr>
</tbody>
</table>

Red arrowhead indicates anchor tested in this study
Methods

- Deployment Force: 40 N
- Cyclic loading protocol stages
 1. 10 – 50 N for 200 cycles, 0.5 Hz
 2. 10 – 100 N for 200 cycles
 3. Load to failure, 10 mm/s
In 20 pcf test blocks, the Bioraptor 2.3 PK and Q-Fix 1.8 showed significantly (p < 0.002) less peak displacement than all other anchors.

In 30 pcf test blocks, the Q-Fix 1.8 showed a trend towards less displacement than the Bioraptor 2.3 PK (p = 0.11) but not Iconix 25, and significantly less than all others (p < 0.02).
In 20 pcf test blocks, the Q-Fix 1.8 displaced less (p < 0.01) than all other anchors.

In 30 pcf test blocks, the Q-Fix 1.8 displaced less than all anchors (p < 0.02), except the Iconix 25 (p = 0.18)
- Higher failure loads in 30 pcf than 20 pcf for all anchors, except Iconix 2 (p = 0.09)
- No statistically significant differences among top performers in either 20 or 30 pcf blocks
- Anchors routinely failed by suture pullout, except the Q-Fix 1.8 which failed by suture breakage in 30 pcf blocks
Limitations

- Synthetic bone substitute
- Non-aqueous environment
- Absence of cortical layer
 - Does not affect majority of rotator cuff anchors [1, 13, 14]
 - However, cortical layer often disrupted by acetabuloplasty or preparation
- 400 Cycles
 - Based on previous studies Barber and Herbert
 - Hip / Shoulder often braced post-operatively
- Unknown clinically relevant load to failure, displacement
 - 250N in rotator cuff [15-18]
Discussion

- ASAs have improved *fixation* in higher density bone
 - Did not test *deployment* directly with imaging

- ASAs generally performed worse than control standard anchor
 - With exceptions - not in 20 pcf, with over 50 N load

- Q-Fix 1.8 outperformed all anchors including the control anchor in all testing conditions
References

