Cam Recurrence and Functional Outcomes Following Arthroscopic Femoral Osteoplasty in Adolescents

Ryan Degen, Stephanie Mayer, Kara Fields, Struan Coleman, Danyal Nawabi, Bryan Kelly

Hospital for Special Surgery New York, NY

Disclosures

- Ryan Degen, MD
 - I have no financial relationships to disclose

Intro

Background:

- The cam deformity in femoroacetabular impingement (FAI) is theorized to form in response to high activity levels during adolescence
 - Particularly with participation in cutting and pivoting sports, such as soccer, football and ice hockey ^{1,2,3}
- Many adolescents undergo arthroscopic femoral osteoplasty as part of their treatment for refractory clinical symptoms of FAI ^{4,5}
- However, concern exists over the possibility of cam recurrence following osteoplasty due to ongoing stresses to the unfused proximal femoral physis

Intro

- Purpose:

- To report the radiographic recurrence rate of the cam deformity in a cohort of adolescent patients following arthroscopic femoral osteoplasty for FAI
- To report patient-reported outcome measures (PROM) compared with a matched control cohort of non-adolescent patients

Hypothesis:

- There will be a higher rate of cam recurrence in the adolescent cohort
- Clinical outcome scores will be equivocal between groups

Case Example

Figure 1. Representative case of an adolescent patient with AP pelvis radiograph [A]. Pre-operative Dunn lateral with alpha angle of 62.5° [B], 2-week post-operative Dunn lateral with alpha angle of 37.4° [C] and 2-year post-operative Dunn lateral with alpha angle of 36.9° [D].

Methods

Patient Identification

- Retrospective review of our prospectively-collected hip registry from 2010 to 2013,
- Inclusion criteria: alpha angle > 50°, surgery before 18 years of age, follow-up > 1 year
- Matched, control cohort of patients >18 years of age with similar inclusion criteria were also included

Data Collection

- Demographics and radiographic parameters recorded
- Patient-reported outcomes collected at 6 weeks, 3 months, 6 months, 1 year and 2 year
 - Modified Harris Hip Score (mHHS)
 - Hip Outcome Score Activities of Daily Living (HOS-ADL) and Sport-specific subscale (HOS-SSS)
 - International Hip Outcome Tool (iHOT-33)

Results

- Demographics

- 45 patients (63 hips) with an average age of 15.7 years (range 13-17) were identified.
- Mean clinical follow-up was 25.2 months (range 11.4-46.8).
- A subgroup of 24 patients (30 hips) had minimum 2-year radiographs available for review.
- A control cohort of 320 patients (385 hips) meeting these same criteria, with the exception of age (mean 30.2, range 18-59), was selected as our non-adolescent group

Results

Radiographic data

- Alpha angle improved from 55.4±12.4° pre-operatively to 38.7±5.2° at 6-weeks post-operatively (p<0.001).
- At 2 years, the alpha angle remained at 39.1±11.5°, which did not differ from 6-week measurements (p=0.38).
- One patient (1/30) demonstrated radiographic evidence of cam

Figure 2. 6-week post-operative radiograph demonstrating alpha angle of 49.2° (A). Evidence of cam recurrence with a corresponding increase in alpha angle (80.6°) (B)

Results

Patient Reported Outcomes

- There were statistically significant improvements on all immediate and final post-operative PROM (mHHS, HOS-ADL, HOS-SSS and iHOT-33, p<0.001).
- Comparisons with a non-adolescent control cohort of 320 patients (385 hips) did not identify any statistically significant differences in outcome scores (p≥0.107).
- Two patients (3.2%) in the adolescent group required revision surgery, compared with 15 patients (3.9%) in the control group.

Survey	Variable		Adolescent	Non-adolescent	P value
modified Harris Hip Score			n=43	n=302	
	Preop score	Mean ± SD	67.4 ± 15.1	63.8 ± 12.1	0.140
	Post-op score	Mean ± SD	86.3 ± 13.9	83.9 ± 15.9	0.713
Hip Outcome Score - Activities of Daily Living			n=45	n=318	
	Preop score	Mean ± SD	75 ± 17.7	74.8 ± 16.1	0.951
	Postop score	Mean ± SD	91.7 ± 10.9	90.6 ± 12.7	0.555
Hip Outcome Score - Sport Specific Subscale			n=45	n=303	
	Preop score	Mean ± SD	57.8 ± 23.4	52.8 ± 23.2	0.174
	Postop score	Mean ± SD	83.9 ± 18.4	79.4 ± 24.1	0.429
International Hip Outcome Tool - 33			n=32	n=236	
	Preop score	Mean ± SD	45.7 ± 18.4	41.2 ± 17.3	0.170
	Postop score	Mean ± SD	81.4 ± 16.1	71.7 ± 24.6	0.107

Table 1. Patient Reported Outcome Measures

Discussion

Conclusion

- There was limited radiographic evidence (3.3%) of cam recurrence following hip arthroscopy and femoral osteochondroplasty for FAI among our cohort of adolescent patients at 2-year follow-up.
- Significant clinical improvements were noted in all patient-reported outcome measures at most recent follow-up, with no significant differences when compared with a control cohort of non-adolescent patients

References

- 1. Agricola R, Bessems JHJM, Ginai AZ, et al. The development of Cam-type deformity in adolescent and young male soccer players. *Am J Sports Med.* 2012;40(5):1099-1106.
- 2. Agricola R, Heijboer MP, Ginai AZ, et al. A cam deformity is gradually acquired during skeletal maturation in adolescent and young male soccer players: a prospective study with minimum 2-year follow-up. *Am J Sports Med.* 2014;42(4):798-806.
- 3. Carsen S, Moroz PJ, Rakhra K, et al. The Otto Aufranc Award. On the etiology of the cam deformity: a cross-sectional pediatric MRI study. *Clin Orthop Relat Res*. 2014;472(2):430-436.
- 4. Ng VY, Arora N, Best TM, Pan X, Ellis TJ. Efficacy of surgery for femoroacetabular impingement: a systematic review. *Am J Sports Med.* 2010;38(11):2337-2345.
- 5. Philippon MJ, Yen Y-M, Briggs KK, Kuppersmith D a, Maxwell RB. Early outcomes after hip arthroscopy for femoroacetabular impingement in the athletic adolescent patient: a preliminary report. *J Pediatr Orthop.* 2008;28(7):705-710.

Thank You

